Synthesis of Ethylenediamine-modified Ordered Mesoporous Carbon as a New Nanoporous Adsorbent for Removal of Cu(II) and Pb(II) Ions from Aqueous Media

Authors

  • Mansoor Anbia Research Laboratory of Nanoporous Materials, Iran University of Science and Technology
Abstract:

The mesoporous carbon (CMK-3) functionalized with ethylenediamine (EDA) has been synthesized (CMK-3-EDA) and applied as a new mesoporous adsorbent for removal of Cu(II) and Pb(II) cations from aqueous solutions. Nitrogen adsorption–desorption measurements (BET) show that surface area, pore size and pore volume of CMK-3 were significantly changed after amine modification. The BET surface area and pore diameter of functionalized product were 344.74 m2 .g−1 and 28.61Å, respectively. The adsorption conditions including contact time, pH value and adsorbent dosage of the sample solution were investigated in batch system and then determined by means of flam atomic absorption spectroscopy. Under experimental conditions, the adsorption capacity was 188.2 mg. g−1 and 196.64 mg. g−1 for Cu(II) and Pb(II) ions, respectively. The obtained high adsorption capacity of CMK-3 functionalized with EDA is due to the amine functional groups formed on the surface of CMK-3 which can react with Pb(II) and Cu(II) ions. Results show that the new synthesized porous material is a highly effective material for sorption of Pb(II) and Cu(II) ions in comparison to other adsorbents.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Modified Mesoporous Silica (SBA–15) with Trithiane as a new effective adsorbent for mercury ions removal from aqueous environment

BACKGROUND Removal of mercury from aqueous environment has been highly regarded in recent years and different methods have been tested for this purpose. One of the most effective ways for mercury ions (Hg(+2)) removal is the use of modified nano porous compounds. Hence, in this work a new physical modification of mesoporous silica (SBA-15) with 1, 3, 5 (Trithiane) as modifier ligand and its app...

full text

application and construction of carbon paste modified electrodes developed for determination of metal ions in some real samples

ساخت الکترودهاِی اصلاح شده ِیکِی از چالشهاِی همِیشگِی در دانش شیمِی بوِیژه شیمِی تجزیه مِی باشد ،که با در نظر گرفتن سادگِی ساخت، کاربردی بودن و ارزان بودن روش مِی توان به باارزش بودن چنِین سنسورهاِی پِی برد.آنچه که در ادامه آورده شده به ساخت و کاربرد الکترودهاِی اصلاح شده با استفاده از نانو ذرات در اندازه گِیرِی ولتامترِی آهن وکادمِیم اشاره دارد. کار اول اختصاص دارد به ساخت الکترود خمِیر کربن اصلاح شده با لِیگاند داِ...

15 صفحه اول

Removal of Neodymium from Aqueous Solutions Using a New Fe-modified Nanoporous Adsorbent of Fe-MCM-41

In our study a new Fe-modified nano porous of MCM-41 was synthezied hydrothermally with cetyltrimethylammoniumbromide (C16TAB) as surfactant and charactrizied using XRD, SEM, FT-IR and BET. This work reports the adsorption of Neodymium from aqueous solution onto Fe-MCM-41.100 ml of stock solution of Neodymium was prepared.Various factors such as pH,the amount of adsorbent were considered. T...

full text

Multi-walled Carbon Nanotube-CO-NH(CH2)2NH-SO3H: A New Adsorbent for Removal of Methylene Blue from Aqueous Media

In this study, Multi-walled carbon nanotube-CO-NH(CH2)2NH-SO3H was prepared through the functionalization of commercial multi-walled carbon nanotubes in three steps and then it was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Transmission Electron Microscopy (TEM). In addition, the adsorption of Methylene Blue was investigated by using these nanotubes. In order to remo...

full text

Application of FFT Cyclic Voltammetry for Monitoring Removal of Mercury Ions from Aqueous Environment using New Adsorbent based Modified Mesoporous Silica (SBA–15)

As the electrochemical method, the Fast Fourier Transform (FFT) Stripping Cyclic Voltammetry detection method was designed for measurement and monitoring of adsorbed mercury ions by new modified adsorbent based on mesoporous silica as a new adsorbent. In this respect, SBA-15 as mesoporous silica and 1, 3, 5 Trithiane as effective modifier ligand were chosen, and the modification process was car...

full text

Application of ordered nanoporous silica for removal of uranium ions from aqueous solutions.

Ordered nanoporous silica (MSU-H) with high surface area has been utilized as a solid substrate of a surface-modified hybrid sorbent for the application to the removal of U(VI). Carboxymethylated polyethyleneimine (CMPEI) with a strong complexing property has been introduced to the pore surface of MSU-H substrate. CMPEI-modified MSU-H (CMPEI/MSU-H) has been characterized by scanning electron mi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 27  issue 9

pages  1415- 1422

publication date 2014-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023